Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43.939
1.
Mikrochim Acta ; 191(5): 295, 2024 05 03.
Article En | MEDLINE | ID: mdl-38700804

White blood cells (WBCs) are robust defenders during antigenic challenges and prime immune cell functioning indicators. High-purity WBC separation is vital for various clinical assays and disease diagnosis. Red blood cells (RBCs) are a major hindrance in WBC separation, constituting 1000 times the WBC population. The study showcases a low-cost micropump integrated microfluidic platform to provide highly purified WBCs for point-of-care testing. An integrated user-friendly microfluidic platform was designed to separate WBCs from finger-prick blood (⁓5 µL), employing an inertial focusing technique. We achieved an efficient WBC separation with 86% WBC purity and 99.99% RBC removal rate in less than 1 min. In addition, the microdevice allows lab-on-chip colorimetric evaluation of chronic granulomatous disease (CGD), a rare genetic disorder affecting globally. The assay duration, straight from separation to disease detection, requires only 20 min. Hence, the proposed microfluidic platform can further be implemented to streamline various clinical procedures involving WBCs in healthcare industries.


Cell Separation , Granulomatous Disease, Chronic , Lab-On-A-Chip Devices , Leukocytes , Microfluidic Analytical Techniques , Humans , Granulomatous Disease, Chronic/diagnosis , Granulomatous Disease, Chronic/blood , Leukocytes/cytology , Cell Separation/instrumentation , Cell Separation/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
2.
J Nanobiotechnology ; 22(1): 231, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720360

BACKGROUND: Circulating tumor cells (CTCs) are considered as a useful biomarker for early cancer diagnosis, which play a crucial role in metastatic process. Unfortunately, the tumor heterogeneity and extremely rare occurrence rate of CTCs among billions of interfering leukocytes seriously hamper the sensitivity and purity of CTCs isolation. METHODS: To address these, we firstly used microfluidic chips to detect the broad-spectrum of triple target combination biomarkers in CTCs of 10 types of cancer patients, including EpCAM, EGFR and Her2. Then, we constructed hybrid engineered cell membrane-camouflaged magnetic nanoparticles (HE-CM-MNs) for efficient capture of heterogeneous CTCs with high-purity, which was enabled by inheriting the recognition ability of HE-CM for various CTCs and reducing homologous cell interaction with leukocytes. Compared with single E-CM-MNs, HE-CM-MNs showed a significant improvement in the capture efficiency for a cell mixture, with an efficiency of 90%. And the capture efficiency of HE-CM-MNs toward 12 subpopulations of tumor cells was ranged from 70 to 85%. Furthermore, by using HE-CM-MNs, we successfully isolated heterogeneous CTCs with high purity from clinical blood samples. Finally, the captured CTCs by HE-CM-MNs could be used for gene mutation analysis. CONCLUSIONS: This study demonstrated the promising potential of HE-CM-MNs for heterogeneous CTCs detection and downstream analysis.


Biomarkers, Tumor , Cell Membrane , Cell Separation , Magnetite Nanoparticles , Neoplastic Cells, Circulating , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Humans , Magnetite Nanoparticles/chemistry , Cell Separation/methods , Cell Line, Tumor , Cell Membrane/metabolism , Cell Membrane/chemistry , Biomarkers, Tumor/blood , Receptor, ErbB-2 , Epithelial Cell Adhesion Molecule/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Neoplasms
3.
Physiol Rep ; 12(9): e16040, 2024 May.
Article En | MEDLINE | ID: mdl-38725080

The endocrine pancreas is composed of clusters of cell groups called pancreatic islets. These cells are responsible for the synthesis and secretion of hormones crucial for glycemic homeostasis, such as insulin and glucagon. Therefore, these cells were the targets of many studies. One method to study and/or understand endocrine pancreatic physiology is the isolation of these islets and stimulation of hormone production using different concentrations of glucose, agonists, and/or antagonists of specific secretagogues and mimicking the stimulation of hormonal synthesis and secretion. Many researchers studied pancreatic physiology in murine models due to their ease of maintenance and rapid development. However, the isolation of pancreatic islets involves meticulous processes that may vary between rodent species. The present study describes a simple and effective technical protocol for isolating intact islets from mice and rats for use as a practical guide for researchers. The method involves digestion of the acinar parenchyma by intraductal collagenase. Isolated islets are suitable for in vitro endocrine secretion analyses, microscopy techniques, and biochemical analyses.


Islets of Langerhans , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Mice , Rats , Male , Mice, Inbred C57BL , Cell Separation/methods
4.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Article En | MEDLINE | ID: mdl-38747479

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Leydig Cells , Testosterone , Animals , Male , Leydig Cells/metabolism , Testosterone/metabolism , Swine , Testis/cytology , Cells, Cultured , Cell Culture Techniques/veterinary , Cell Separation/methods , Cell Separation/veterinary
5.
Methods Mol Biol ; 2800: 1-10, 2024.
Article En | MEDLINE | ID: mdl-38709473

The fruit fly Drosophila is a well-established invertebrate model that enables in vivo imaging of innate immune cell (e.g., macrophage) migration and signaling at high spatiotemporal resolution within the intact, living animal. While optimized methods already exist to enable flow cytometry-based macrophage isolation from Drosophila at various stages of development, there remains a need for more rapid and gentle methods to isolate living macrophages for downstream ex vivo applications. Here, we describe techniques for rapid and direct isolation of living macrophages from mature Drosophila pupae and their downstream ex vivo preparation for live imaging and immunostaining. This strategy enables straightforward access to physiologically relevant innate immune cells, both circulating and tissue-resident populations, for subsequent imaging of signal transduction.


Macrophages , Pupa , Animals , Pupa/cytology , Macrophages/cytology , Macrophages/metabolism , Drosophila , Cell Separation/methods , Flow Cytometry/methods , Drosophila melanogaster/cytology
6.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702793

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Mesenchymal Stem Cells , Wharton Jelly , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Wharton Jelly/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Cell Proliferation , Cell Separation/methods , Cell Separation/standards
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732108

Platelets are metabolically active, anucleated and small circulating cells mainly responsible for the prevention of bleeding and maintenance of hemostasis. Previous studies showed that platelets mitochondrial content, function, and energy supply change during several diseases such as HIV/AIDS, COVID-19, pulmonary arterial hypertension, and in preeclampsia during pregnancy. These changes in platelets contributed to the severity of diseases and mortality. In our previous studies, we have shown that the seahorse-based cellular stress assay (CSA) parameters are crucial to the understanding of the mitochondrial performance in peripheral blood mononuclear cells (PBMCS). Moreover, the results of CSA parameters were significantly influenced by the PBMC preparation methods. In this study, we assessed the correlation of CSA parameters and intracellular ATP content in platelets and evaluated the effects of platelet preparation methods on the results of CSA parameters and intracellular ATP content. We compared the results of CSA parameters and intracellular ATP content in platelets isolated by density centrifugation with Optiprep and simple centrifugation of blood samples without Optiprep. Platelets isolated by centrifugation with Optiprep showed a higher spare capacity, basal respiration, and maximal respiration than those isolated without Optiprep. There was a clear correlation between basal respiration and maximal respiration, and the whole-ATP content in both isolation methods. Moreover, a positive correlation was observed between the relative spare capacity and whole-cell ATP content. In conclusion, the results of seahorse-based CSA parameters and intracellular ATP content in platelets are markedly influenced by the platelet isolation methods employed. The results of basal respiration and maximal respiration are hallmarks of cellular activity in platelets, and whole-cell ATP content is a potential hint for basic platelet viability. We recommend further studies to evaluate the role of CSA parameters and intracellular ATP content in platelets as biomarkers for the diagnosis and prediction of disease states.


Adenosine Triphosphate , Blood Platelets , Humans , Blood Platelets/metabolism , Adenosine Triphosphate/metabolism , Adult , Mitochondria/metabolism , Stress, Physiological , Female , Cell Separation/methods , Leukocytes, Mononuclear/metabolism , Male , Middle Aged
8.
Bioresour Technol ; 401: 130686, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599351

Although there are many microorganisms in nature, the limitations of isolation and cultivation conditions have restricted the development of artificial enhanced remediation technology using functional microbial communities. In this study, an integrated technology of Magnetic Nanoparticle-mediated Enrichment (MME) and Microfluidic Single Cell separation (MSC) that breaks through the bottleneck of traditional separation and cultivation techniques and can efficiently obtain more in situ functional microorganisms from the environment was developed. MME technology was first used to enrich rapidly growing active bacteria in the environment. Subsequently, MSC technology was applied to isolate and incubate functional bacterial communities in situ and validate the degradation ability of individual bacteria. As a result, this study has changed the order of traditional pure culture methods, which are first selected and then cultured, and provided a new method for obtaining non-culturable functional microorganisms.


Bacteria , Magnetite Nanoparticles , Magnetite Nanoparticles/chemistry , Cell Separation/methods , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , Biodegradation, Environmental , Microfluidics/methods
9.
Analyst ; 149(10): 2812-2825, 2024 May 13.
Article En | MEDLINE | ID: mdl-38644740

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.


Cell Separation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/blood , Cell Separation/methods , Cell Separation/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
10.
Biomed Microdevices ; 26(2): 23, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652182

Millions of people are subject to infertility worldwide and one in every six people, regardless of gender, experiences infertility at some period in their life, according to the World Health Organization. Assisted reproductive technologies are defined as a set of procedures that can address the infertility issue among couples, culminating in the alleviation of the condition. However, the costly conventional procedures of assisted reproduction and the inherent vagaries of the processes involved represent a setback for its successful implementation. Microfluidics, an emerging tool for processing low-volume samples, have recently started to play a role in infertility diagnosis and treatment. Given its host of benefits, including manipulating cells at the microscale, repeatability, automation, and superior biocompatibility, microfluidics have been adopted for various procedures in assisted reproduction, ranging from sperm sorting and analysis to more advanced processes such as IVF-on-a-chip. In this review, we try to adopt a more holistic approach and cover different uses of microfluidics for a variety of applications, specifically aimed at sperm separation and analysis. We present various sperm separation microfluidic techniques, categorized as natural and non-natural methods. A few of the recent developments in on-chip fertilization are also discussed.


Cell Separation , Reproductive Techniques, Assisted , Spermatozoa , Humans , Male , Spermatozoa/cytology , Cell Separation/instrumentation , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Animals
11.
Sci Rep ; 14(1): 8748, 2024 04 16.
Article En | MEDLINE | ID: mdl-38627566

Efficient techniques for separating target cells from undiluted blood are necessary for various diagnostic and research applications. This paper presents acoustic focusing in dense media containing iodixanol to purify peripheral blood mononuclear cells (PBMCs) from whole blood in a label-free and flow-through format. If the blood is laminated or mixed with iodixanol solutions while passing through the resonant microchannel, all the components (fluids and cells) rearrange according to their acoustic impedances. Red blood cells (RBCs) have higher effective acoustic impedance than PBMCs. Therefore, they relocate to the pressure node despite the dense medium, while PBMCs stay near the channel walls due to their negative contrast factor relative to their surrounding medium. By modifying the medium and thus tuning the contrast factor of the cells, we enriched PBMCs relative to RBCs by a factor of 3600 to 11,000 and with a separation efficiency of 85%. That level of RBC depletion is higher than most other microfluidic methods and similar to that of density gradient centrifugation. The current acoustophoretic chip runs up to 20 µl/min undiluted whole blood and can be integrated with downstream analysis.


Leukocytes, Mononuclear , Microfluidic Analytical Techniques , Cell Separation/methods , Triiodobenzoic Acids , Acoustics , Microfluidic Analytical Techniques/methods
12.
Anal Methods ; 16(15): 2368-2377, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38572530

Microfluidic technology has great advantages in the precise manipulation of micro-nano particles, and the hybrid microfluidic separation technology has attracted much attention due to the advantages of both active and passive separation technology at the same time. In this paper, the hydrophoresis sorting technique is combined with the dielectrophoresis technique, and a dielectrophoresis-assisted hydrophoresis microdevice is studied to separate blood cells. By using the dielectrophoresis force to change the suspension position of the cells in the channel, the scope of the hydrophoresis device for sorting particles is expanded. At the same time, the effects of microchannel width, fluid velocity, and electrode voltage on cell sorting were discussed, and the cell separation process was simulated. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.


Microfluidic Analytical Techniques , Microfluidic Analytical Techniques/methods , Computer Simulation , Microfluidics , Electrophoresis/methods , Cell Separation/methods
13.
J Immunol Methods ; 528: 113667, 2024 May.
Article En | MEDLINE | ID: mdl-38574803

Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.


Receptors, Chimeric Antigen , T-Lymphocytes , Cytotoxicity, Immunologic , Cell Separation , Magnetic Phenomena , Immunotherapy, Adoptive/methods
14.
Nat Commun ; 15(1): 2539, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570531

Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.


Endothelial Cells , Ephrins , Mice , Humans , Animals , Endothelial Cells/metabolism , Ephrin-B2/genetics , Ephrin-B2/metabolism , Arteries/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Cell Separation , Receptor, EphB4/genetics , Receptor, EphB4/metabolism
15.
J Mater Chem B ; 12(17): 4270-4278, 2024 May 01.
Article En | MEDLINE | ID: mdl-38619420

Although the importance of circulating tumor cells (CTCs) has been widely recognized, it is still a challenge to realize high-efficiency and accurate enrichment and identification of highly heterogeneous CTCs derived from various types of tumors in complex cancer processes. Currently, the most widely used methods follow the general idea of sequential immunoaffinitive capture and immunostaining to achieve the abovementioned goal. However, different organ/tissue origins as well as the inherent heterogeneity of CTCs would lead to the missed detection of certain CTC subtypes using such methods. Further, immunocytochemistry (ICC) immunostaining disrupts the physiological structure of cells, severely limiting the detection and application scenarios that require the participation of live cells. To address these limitations, we have developed a generally applicable strategy for the isolation and labeling of CTCs. This strategy focuses on targeting the universal characteristics of all tumor cells, specifically the abnormally expressed cell membrane glycoproteins, such as the transferrin receptor and sialic acid. Strategically, transferrin-functionalized magnetic beads (TMBs) were applied to enrich CTCs, and azide-based bioorthogonal chemistry was employed to label target CTCs. Accordingly, the membrane glycoprotein-targeting strategy achieved unbiased enrichment and labeling of broad-spectrum CTCs that were both epithelial and non-epithelial phenotypic populations with varied organ/tissue origins (MCF-7, HepG2, A549, Jurkat, and B16), with a capture efficiency of >95% and a detection limit as low as 5 cells per mL in artificial blood. In particular, our developed strategy displayed excellent specificity, and the CTCs under capture and fluorescence labelling remained with good viability and could be further cultivated and analyzed. Finally, the membrane glycoprotein-targeting strategy successfully detected and identified 33-223 CTCs from 1 mL patient blood samples.


Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Cell Separation/methods , Glycoproteins/chemistry
16.
Anal Chem ; 96(17): 6764-6773, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38619911

Tremendous efforts have been made to develop practical and efficient microfluidic cell and particle sorting systems; however, there are technological limitations in terms of system complexity and low operability. Here, we propose a sheath flow generator that can dramatically simplify operational procedures and enhance the usability of microfluidic cell sorters. The device utilizes an embedded polydimethylsiloxane (PDMS) sponge with interconnected micropores, which is in direct contact with microchannels and seamlessly integrated into the microfluidic platform. The high-density micropores on the sponge surface facilitated fluid drainage, and the drained fluid was used as the sheath flow for downstream cell sorting processes. To fabricate the integrated device, a new process for sponge-embedded substrates was developed through the accumulation, incorporation, and dissolution of PMMA microparticles as sacrificial porogens. The effects of the microchannel geometry and flow velocity on the sheath flow generation were investigated. Furthermore, an asymmetric lattice-shaped microchannel network for cell/particle sorting was connected to the sheath flow generator in series, and the sorting performances of model particles, blood cells, and spiked tumor cells were investigated. The sheath flow generation technique developed in this study is expected to streamline conventional microfluidic cell-sorting systems as it dramatically improves versatility and operability.


Cell Separation , Microfluidic Analytical Techniques , Humans , Cell Separation/instrumentation , Cell Separation/methods , Microfluidic Analytical Techniques/instrumentation , Porosity , Dimethylpolysiloxanes/chemistry , Lab-On-A-Chip Devices , Polymethyl Methacrylate/chemistry
17.
J Neurosci Methods ; 406: 110137, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626853

BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.


Alzheimer Disease , Cerebral Cortex , Cryopreservation , Extracellular Vesicles , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Cryopreservation/methods , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Neurons/metabolism , Aged , Male , Female , Astrocytes/metabolism , Aged, 80 and over , Cell Separation/methods , Flow Cytometry/methods , Microglia/metabolism
18.
Lab Chip ; 24(9): 2575-2589, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38646820

Leukocyte count is routinely performed for diagnostic purposes and is rapidly emerging as a significant biomarker for a wide array of diseases. Additionally, leukocytes have demonstrated considerable promise in novel cell-based immunotherapies. However, the direct retrieval of leukocytes from whole blood is a significant challenge due to their low abundance compared to erythrocytes. Here, we introduce a microfluidic-based platform that isolates and recovers leukocytes from diluted whole blood in a single step. Our platform utilizes a novel, sheathless method to initially sediment and focus blood cells into a dense stream while flowing through a tubing before entering the microfluidic device. A hexagonal-shaped structure, patterned at the device's inlet, directs all the blood cells against the channel's outer walls. The focused cells are then separated based on their size using the deterministic lateral displacement (DLD) microfluidic technique. We evaluated various parameters that could influence leukocyte separation, including different focusing structures (assessed both computationally and experimentally), the orientation of the tubing-chip interface, the effects of blood sample hematocrit (dilution), and flow rate. Our device demonstrated the ability to isolate leukocytes from diluted blood with a separation efficiency of 100%, a recovery rate of 76%, and a purity of 80%, while maintaining a cell viability of 98%. The device operates for over 30 min at a flow rate of 2 µL min-1. Furthermore, we developed a handheld pressure controller to drive fluid flow, enhancing the operability of our platform outside of central laboratories and enabling near-patient testing. Our platform can be integrated with downstream cell-based assays and analytical methods that require high leukocyte purity (80%), ranging from cell counting to diagnostics and cell culture applications.


Cell Separation , Leukocytes , Microfluidic Analytical Techniques , Leukocytes/cytology , Humans , Microfluidic Analytical Techniques/instrumentation , Cell Separation/instrumentation , Equipment Design , Lab-On-A-Chip Devices
19.
Sci Rep ; 14(1): 9457, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658627

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.


Antibodies, Monoclonal , Cricetulus , Receptor, ErbB-2 , CHO Cells , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Humans , Cell Separation/methods , Single-Cell Analysis/methods
20.
Anal Chem ; 96(18): 6898-6905, 2024 May 07.
Article En | MEDLINE | ID: mdl-38649796

High-throughput single-cell analysis typically relies on the isolation of cells of interest in separate compartments for subsequent phenotypic or genotypic characterization. Using microfluidics, this is achieved by isolating individual cells in microdroplets or microwells. However, due to cell-to-cell variability in size, shape, and density, the cell capture efficiencies may vary significantly. This variability can negatively impact the measurements and introduce undesirable artifacts when trying to isolate and characterize heterogeneous cell populations. In this study, we show that single-cell isolation biases in microfluidics can be circumvented by increasing the viscosity of fluids in which cells are dispersed. At a viscosity of 40-50 cP (cP), the cell sedimentation is effectively reduced, resulting in a steady cell flow inside the microfluidics chip and consistent encapsulation in water-in-oil droplets over extended periods of time. This approach allows nearly all cells in a sample to be isolated with the same efficiency, irrespective of their type. Our results show that increased fluid viscosity, rather than cell-adjusted density, provides a more reliable approach to mitigate single-cell isolation biases.


Single-Cell Analysis , Viscosity , Humans , Microfluidic Analytical Techniques , Cell Separation/methods
...